f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ssc

NAG C Library Function Document

nag zhegst (f08ssc)

1 Purpose

nag_zhegst (f08ssc) reduces a complex Hermitian-definite generalized eigenproblem Az = ABz,
ABz= Az or BAz = Az to the standard form Cy = Ay, where A is a complex Hermitian matrix and
B has been factorized by nag_zpotrf (f07frc).

2 Specification

void nag_zhegst (Nag_OrderType order, Nag_ComputeType comp_type,
Nag_UploType uplo, Integer n, Complex a[], Integer pda, const Complex b[],
Integer pdb, NagError *fail)

3 Description

To reduce the complex Hermitian-definite generalized eigenproblem Az = ABz, ABz = Az or BAz = Az
to the standard form C'y = Ay, this function must be preceded by a call to nag_zpotrf (f07frc) which
computes the Cholesky factorization of B; B must be positive-definite.

The different problem types are specified by the parameter comp_type, as indicated in the table below.
The table shows how C' is computed by the function, and also how the eigenvectors z of the original
problem can be recovered from the eigenvectors of the standard form.

comp_type | Problem uplo B C z
1 Az = ABz | Nag Upper | gy | U 74U | Uy
Nag_Lower | ;rH | -1 o1~ L—Hy
2 ABz = Xz | Nag Upper | Uy | vAUE Uy
Nag_Lower | ;1 H | [HAgT, L H y
3 BAz =)\z | Nag Upper | U7y | vAU" UvH Yy
Nag_Lower | ;1 H | [HATL Ly

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: comp_type — Nag ComputeType Input

On entry: indicates how the standard form is computed as follows:

[NP3645/7] f08ssc.1

f08ssc

f08ssc.

NAG C Library Manual

if comp_type = Nag_Compute_1,
if uplo = Nag_Upper, C = U 7 AU™";
if uplo = Nag_Lower, C = L 'AL ™7,
if comp_type = Nag_Compute_2 or Nag_Compute_3,
if uplo = Nag_Upper, C = UAU";
if uplo = Nag_Lower, C = L7 AL.
Constraint: comp_type = Nag_Compute_1, Nag_Compute_2 or Nag_Compute_3.

uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how B has been
factorized, as follows:

if uplo = Nag_Upper, the upper triangular part of A is stored and B = U”U;
if uplo = Nag_Lower, the lower triangular part of A is stored and B = L.
Constraint: uplo = Nag_Upper or Nag_Lower.

n — Integer Input
On entry: n, the order of the matrices A and B.

Constraint: n > 0.

a[dim| — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: the n by n Hermitian matrix A. If uplo = Nag_Upper, the upper triangle of A must be
stored and the elements of the array below the diagonal are not referenced; if uplo = Nag_Lower,
the lower triangle of A must be stored and the elements of the array above the diagonal are not
referenced.

On exit: the upper or lower triangle of A is overwritten by the corresponding upper or lower triangle
of C' as specified by comp_type and uplo.
pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda > max(1,n).

b[dim] — Complex Input/Output
Note: the dimension, dim, of the array b must be at least max(1, pdb x n).

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].

On entry: the Cholesky factor of B as specified by uple and returned by nag_zpotrf (f07frc).

On exit: used as internal workspace prior to being restored and hence is unchanged.

pdb — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix B in the array b.

Constraint. pdb > max(1,n).

2 [NP3645/7]

f08 — Least-squares and FEigenvalue Problems (LAPACK)

9: fail — NagError *

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

NE_INT 2

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

f08ssc

Output

An internal error has occurred in this function. Check the function call and any array sizes. If the

call is correct then please consult NAG for assistance.

7 Accuracy

Forming the reduced matrix C'is a stable procedure. However it involves implicit multiplication by B~ if
(comp_type = Nag_Compute_1) or B (if comp_type = Nag_Compute_2 or Nag_Compute_3). When the
function is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there

may be a significant loss of accuracy if B is ill-conditioned with respect to inversion.

8 Further Comments

The total number of real floating-point operations is approximately 4n’.

The real analogue of this function is nag_dsygst (f08sec).

9 Example

To compute all the eigenvalues of Az = ABz, where

—7.3640.00: 0.77 —0.437 —0.64 —0.92¢
0.77+0.437 3.49+40.00¢ 2.19+4.45¢
—0.64 40927 2.19 —4.45; 0.12 +0.00¢
3.01+697: 190—-3.73: 2.88+3.17¢

A=

and

[NP3645/7]

3.01 —6.97:
1.90 +3.734
2.88 —3.17
—2.54 +0.007

f08ssc.3

f08ssc NAG C Library Manual

3.23 4+ 0.00¢ 1.51 —1.92¢ 1.90 + 0.84¢ 0.42 +2.50¢
1.51 4+ 1.92¢ 358 +0.00¢ —-023+1.11z —1.1841.37:
1.90 -0.84¢ —-0.23—-1.112 4.09+0.00: 2.33 —0.14¢
042 —-250: —1.18—-1.37: 23340.14¢ 4.2940.00¢

B:

Here B is Hermitian positive-definite and must first be factorized by nag_zpotrf (f07frc). The program
calls nag_zhegst (f08ssc) to reduce the problem to the standard form Cy = Ay; then nag_zhetrd (fO8fsc) to
reduce C' to tridiagonal form, and nag_dsterf (f08jfc) to compute the eigenvalues.

9.1 Program Text

/* nag_zhegst (f08ssc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>

int main(void)
{
/* Scalars */
Integer i, j, n, pda, pdb, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2];
double *d=0, *e=0;
Complex *a=0, *b=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define B(I,J) b[(J-1)*pdb + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define B(I,J) b[(I-1)*pdb + T - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f08ssc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("%*["\n] ");

Vscanf ("$1d%*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdb = n;
#else
pda = n;
pdb = n;
#endif
d_len = n;
e_len = n-1;
tau_len = n-1;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) ||
(b = NAG_ALLOC(n * n, Complex)) ||

f08ssc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ssc

! (d = NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_len, double)) ||
! (tau = NAG_ALLOC(tau_len, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file */
Vscanf (" ' %1s ’'%*["\n] ", uplo_char);

if (*(unsigned char #*)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char #*)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A(i,Jj).re, &A(i,]J).im);
¥
Vscanf ("sx[*\n] ");
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,]j).im);
¥
Vscanf ("s*[*\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= 1i; ++3)
Vscanf (" (%1f , %1f)", &A(i,Jj).re, &A(i,]).im);
}
Vscanf ("$x[*\n] ");
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= 1i; ++3j)
Vscanf (" (%1f , %1f)", &B(i,Jj).re, &B(i,]J).im);
}
Vscanf ("sx[“\n] ");
3

/* Compute the Cholesky factorization of B */
fO7frc(order, uplo, n, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07frc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Reduce the problem to standard form C*y = lambda*y, storing */
/* the result in A *x/
f08ssc(order, Nag_Compute_1, uplo, n, a, pda, b, pdb, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from f08ssc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3

/* Reduce C to tridiagonal form T = (Q**T)*C*Q */
f08fsc(order, uplo, n, a, pda, 4, e, tau, &fail);
if (fail.code != NE_NOERROR)

[NP3645/7] f08ssc.5

f08ssc

{
Vprintf ("Error from f08fsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥

/* Calculate the eigenvalues of T (same as C) */

f08jfc(n, d, e, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08jfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3
/* Print eigenvalues */
Vprintf ("Eigenvalues\n") ;

for (i = 1; 1 <= n; ++1)
Vprintf ("%8.4f%s", d[i-1], 1%9==0 2?"\n":" ");
Vprintf ("\n") ;
END:
if (a) NAG_FREE (a);
if (b) NAG_FREE(b);
if (d) NAG_FREE(4d);
if (e) NAG_FREE (e);
if (tau) NAG_FREE (tau);

return exit_status;

9.2 Program Data

f08ssc Example Program Data

4
ILI
(-7.36, 0.00)
(0.77, 0.43) (3.49, 0.00)
(-0.64, 0.92) (2.19,-4.45) (0.12, 0.00)
(3.01, 6.97) (1.90,-3.73) (2.88, 3.17) (-2.54,
(3.23, 0.00)
(1.51, 1.92) (3.58, 0.00)
(1.90,-0.84) (-0.23,-1.11) (4.09, 0.00)
(0.42,-2.50) (-1.18,-1.37) (2.33, 0.14) (4.29,

9.3 Program Results

f08ssc Example Program Results

Eigenvalues
-5.9990 -2.9936 0.5047 3.9990

0.00)

0.00)

NAG C Library Manual

:Value of N
:Value of UPLO

:End of matrix A

:End of matrix B

f08ssc.6 (last)

[NP3645/7]

	f08ssc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	comp_type
	uplo
	n
	a
	pda
	b
	pdb
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

